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Given a field K, one may ask which finite groups are Galois groups of field extensions L/K
such that L is a maximal subfield of a central division algebra over K. Such groups are called
admissible over K, and Schacher was the first to explore this connection between inverse
Galois theory and division algebras. In my graduate work I have focused on this problem
when K is a global field, and have obtained a complete characterization of admissible groups
in several cases, and partial results in other cases [Sin24]. In addition to continuing to
investigate the case of global fields, I am also studying the case of semi-global fields.

1. Introduction

A central division algebra over a field K is a finite dimensional associative K-algebra such
that its center is K and all of its non-zero elements have multiplicative inverses (for example,
the algebra of quaternions over R). The dimension of a division algebra as a K vector space
is always a square [Pie82], and its index is the square-root of this dimension. If D is a
K-division algebra of index n and center K then a subfield L of D containing K is maximal
among all such subfields if and only if its degree over K is n [Pie82]. Such a subfield is called
a maximal subfield of D. For example, the complex numbers are a maximal subfield of the
division algebra of quaternions over R.

Given a field K, the classical inverse Galois problem asks whether or not every finite group
appears as the Galois group of some Galois extension of K. With the terminology in the
previous paragraph, one can also ask the following question.

Question 1. Which finite groups G are Galois groups of field extensions L/K such that L
is a maximal subfield of a central division algebra over K?

Such a group G is called admissible over K or K-admissible, and the field L is called
K-adequate. By the theory of division algebras, this is equivalent to asking whether there is
a G-cross product central division algebra over K. This connection between inverse Galois
theory and division algebras was first explored by Schacher [Sch68]. Like the inverse Galois
problem, the question remains open in general. But unlike the inverse Galois problem, the
groups that occur in this fashion are generally quite restricted. For example, while every
finite group is expected to be realized as a Galois group over Q, a Q-admissible group
must be Sylow-metacyclic (a Sylow-metacyclic group is a group whose Sylow subgroups are
metacyclic, and a metacyclic group is an extension of a cyclic group by a cyclic group).
Nevertheless, every finite group is admissible over some number field [Sch68].

While the problem is open in general, including over Q, some results are known. Sonn
[Son83] proved the admissibility of solvable Sylow metacyclic groups over Q. Many non-
solvable groups with metacyclic Sylow subgroups have also been shown to be admissible
over Q as well as over other classes of number fields, for example [FV87], [FF90], [SS92],
[Fei04]. In [HHK11], groups that are admissible over function fields over certain complete
discretely valued fields were characterized using patching techniques.
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Over number fields, most results have focused on tamely ramified adequate extensions and
Sylow metacyclic subgroups [Lie94; Nef13]. In fact, as explained in §2.1, a tamely ramified
adequate extension must have Sylow metacyclic Galois group. My research concerns both
tamely and wildly ramified adequate extensions over global fields, and in particular over
number fields. I have obtained a complete characterization of admissible p-groups in several
cases, and partial results in others. Since not every non-solvable Sylow metacyclic group is
known to be Galois over Q, the problem of completely characterizing admissible groups over
number fields remains out of reach at present.

In section §2.1, I explain my results over general number fields and in section §2.2 the
results over special class of number fields, including Galois number fields and number fields
of degree 2,3, and 4. Finally, I mention a result about global function fields in section §2.3.
I have included extra hypotheses in stating several results where doing so would make the
statements simpler. Therefore a number of these results extend to more general situations.
See [Sin24] for more details about these results. Additionally, in section §2.4, I briefly explain
my research work in computer science prior to starting my Ph.D. in mathematics [JAGSB20;
SD18; PDS18].

Since the Brauer group is intimately related to the division algebras over a field, it plays
a key role in studying admissibility. In the next section I explain Schacher’s observation
that uses Brauer groups and class field theory to formulate the admissibility problem as a
version of the inverse Galois problem with local conditions. In my proofs, I make essential
use of the structure of the Galois group of the maximal p-extension of a local field, results
on embedding problems, and Neukirch’s generalization of the Grunwald-Wang theorem.

2. Summary of research results

The equality of period and index for division algebras over global fields [Pie82] implies
that a G-Galois field extension L/K is adequate if and only if H2(G,L∗) has an element of
order [L : K]. Using the exactness of 0 → H2(G,L∗) →

⊕
pH

2(Dp, L
∗
p) → Q/Z, Schacher

[Sch68] obtained the following arithmetic criterion for the extension L/K to be K-adequate:
A G-Galois field extension L/K is K-adequate if and only if for each rational prime p

dividing the order of G, there are two distinct places p1, p2 of K such that the decomposition
groups corresponding to these places in the field extension L/K contain a p-Sylow subgroup
of G.

This formulation makes the admissibility problem a version of inverse Galois problem
with local conditions, a problem that is open in general, including for solvable groups. For
example, while Shafarevich’s construction shows that every solvable group can be realized
as a Galois group over a number field, there is no known way to realize the given local
extensions [SW98].

2.1. Admissibility over number fields. Schacher observed in [Sch68] that if K is a num-
ber field to which the p-adic valuation extends uniquely, then the p-Sylow subgroup of any
K-admissible group is necessarily metacyclic. This follows at once from Schacher’s crite-
rion noted above. In particular, this is true for the field of rational numbers Q, and so a
Q-admissible group must be Sylow-metacyclic.

In the converse direction, Sonn [Son83] proved that every solvable Sylow-metacyclic group
is admissible over Q. Admissibility of non-solvable Sylow-metacyclic groups over Q remains
out of reach at present since there are examples of such groups that are not known to be
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even Galois over Q [CS81]. It is also known that not every solvable Sylow-metacyclic group
is admissible over every number field (e.g., the dihedral group of order 8 is not admissible
over Q(i) [Lie94]). In light of this background, a natural question is:

Can we classify the number fields K for which every solvable Sylow-metacyclic group is
K-admissible?

In this direction, Liedahl [Lie94] proved a necessary and sufficient criterion for a given
odd metacyclic p-group to be admissible over a given number field, and this criterion was
later extended by Neftin [Nef13] to solvable Sylow metacyclic groups under the assumption
that the adequate extension is tamely ramified. This criterion depends on whether the given
group has a specific sort of presentation, and this presentation depends on the number field.
Building on the previous work, I give a complete answer to the above question with the
following theorem.

We say that a group G is tamely admissible over K if an adequate G-Galois extension
L/K can be chosen to be tamely ramified over K.

Theorem 2. Let K be a number field. Then

(i) A solvable Sylow-metacyclic group is tamely admissible over K if and only if each of
its Sylow subgroups are tamely admissible over K.

(ii) Every 2-metacyclic group is tamely admissible over K if and only if K does not
contain i,

√
2,
√
−2.

(iii) Let p be any odd prime, and let αp be a primitive element of the unique degree p-
extension over Q in Q(ζp2)/Q. Then every p-metacyclic group is tamely admissible
over K if and only if αp /∈ K.

As a result, we get the following corollary which generalizes Sonn’s result about admissi-
bility of solvable Sylow-metacyclic groups over Q:

Corollary 3. If K/Q is an abelian extension with square free conductor then every solvable
Sylow-metacyclic group is admissible over K.

If we ask the adequate extension to be tamely ramified then we get the following classifi-
cation result about cyclotomic fields:

Corollary 4. Every solvable Sylow-metacyclic group is tamely admissible over a cyclotomic
field Q(ζm) if and only if m is square free.

Another corollary to Theorem 2 is that for a given number field K, as long as a solvable
Sylow-metacyclic group is not divisible by certain primes (which belong to a finite list as in
Corollary 5) then the group is K-admissible. More precisely,

Corollary 5. Let K be a number field. If G is a solvable Sylow metacyclic group such
that for each prime p dividing |G|, either p is unramified in K or p ∤ [K : Q], then G is
K-admissible.

Moreover, a corresponding adequate extension can be chosen to be tamely ramified over
K.

Note that if we ask the adequate extension to be tamely ramified, then G is necessarily
Sylow-metacyclic (by a similar argument as in Theorem 4.1 of [Sch68]). In that case the
above result provides a complete characterization of admissible groups whose order is coprime
to these finitely many primes.
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As remarked above, in the cases not covered by the above proposition, there are indeed
pairs (K,G), for K a number field and G a Sylow-metacyclic group, such that G is not
admissible overK. In [Fei93] it was shown that the dihedral group of order 8 is not admissible
over Q(i), and the generalized quaternion group of order 16 is not admissible over Q(

√
−2).

In addition, I also show that the semi-dihedral group of order 16 is not admissible over
Q(

√
2). Theorem 2 says that these are in some sense the first examples where admissibility

of 2-metacyclic group goes wrong.
Inadmissibility of dihedral group of order 8 over Q(i) can be seen as a consequence of the

following result. We say that a prime p decomposes in K if the p-adic valuation on Q extends
to at least two inequivalent valuations on K.

Proposition 6. Let K be an number field such that ζpn ∈ K for n ≥ 0, and p does not
decompose in K. Let G be a finite group such that its p-Sylow subgroup is non-abelian of
order ≤ pn+1. Then G is not admissible over K.

Note that n needs to be at least 2 for this proposition to say something non-trivial since a
group of order p or p2 is necessarily abelian. This proposition provides evidence about how
the presence of roots of unity forces admissible groups to be “more abelian”. This is in line
with the results of [HHK11] where the assumption of algebraically closed residue field for a
semi-global field constrains the admissible groups to be abelian.

The above proposition shows that the class of tamely admissible groups may shrink as we
go up in a field extension. For example, every metacyclic p-group is admissible over Q(ζp)
(for example by Corollary 4) but the (unique) non-abelian group Z/p2⋊Z/p is not admissible
over Q(ζp2) by Proposition 6. This is in contrast to the class of “wildly admissible” groups
that may get larger in field extensions [NV13]. For a non-metacyclic p-group to be admissible,
the prime p must decompose in the number field, and the corresponding adequate extension
must be wildly ramified. Investigating this phenomenon further I show the the following:

Theorem 7. Let K be a number field. Let p be an odd rational prime that decomposes in
K, and is unramified in K. Let p = pe11 pe22 . . . pemk in K such that

[Kp1 : Qp] ≥ [Kp2 : Qp] ≥ · · · ≥ [Kpm : Qp].

Then a p-group G is K-admissible if and only if d(G) ≤ [Kp2 : Qp] + 1.

Here d(G) is the minimum number of generators of the p-group G.
The proof for the above theorem uses a result of Neukirch [Neu79] that solves the inverse

Galois problem with local conditions in this case, along with a result of Shafarevich on the
Galois group of the maximal p-extension of a local field that doesn’t contain any p-th roots
of unity.

Once again, an important remark is that away from a set of finitely many primes, the
admissible p-groups are completely determined. Moreover, a solvable group G for which each
prime p dividing the order of G satisfies the above criteria is K-admissible. For example, in
case of Galois number fields, we get:

Proposition 8. Let K be a Galois number field. Let G be an odd solvable group such that
for each p dividing |G|,

• p decomposes in K.
• Either p is unramified in K, or (p− 1) ∤ [K : Q].
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• d(Gp) ≤ [Kp : Qp] + 1

Then G is K-admissible.

Here Gp is a p-Sylow subgroups of G (all such subgroups are conjugates and hence isomor-
phic), and Kp is a completion of K at a prime above p (all such completions are isomorphic
over Qp since K is assumed to be Galois over Q).

The above theorem provides sufficient conditions for a group to be K-admissible. Unlike
the case of rational numbers, the question of necessary conditions remains open for general
number fields K once we go beyond p-groups and allow wildly ramified adequate extensions.
But in some special cases the above conditions are also necessary. For example, in the case
of nilpotent groups we can say more due to the following lemma which follows from taking
the tensor products of appropriate division algebras:

Lemma 9. A nilpotent group G is admissible over a global field if and only if all of its Sylow
subgroups are.

This leads to the following result:

Corollary 10. Let K be a finite Galois extension of Q, and G be an odd nilpotent group
with |G| coprime to the discriminant of K. Then G is admissible over K if and only if for
each p | |G| one of the following conditions holds:

(i) prime p decomposes in K and d(Gp) ≤ fp + 1, or,
(ii) prime p does not decompose in K and Gp is metacyclic.

For a given number field K, the above results potentially leave out a finite set of primes for
admissibility of p-groups. If such a prime p does not decompose in K then the Liedahl con-
ditions [Lie94] provide a characterization. On the other hand, if such a prime p decomposes
in K then I have obtained partial results. In [Sch68], it was shown that if a p-group G is
admissible over a degree n Galois number field, then d(G) ≤ (n/2) + 2. I have strengthened
this result as follows:

Theorem 11. Let K be a finite Galois extension of Q, and p be an odd rational prime such
that ζp /∈ K, and p decomposes in K. Let G be a p-group. Then

• If ζp /∈ Kp then G is K-admissible if and only if d(G) ≤ [Kp : Qp] + 1.
• If ζp ∈ Kp then G is K-admissible if and only if G can be generated by [Kp : Qp] + 2
many generators x1, x2, . . . , xn satisfying the relation

xps

1 [x1, x2][x3, x4] . . . [xn−1, xn] = 1

where ps is such that ζps ∈ Kp but ζps+1 /∈ Kp.

Note that since we assumed p to be an odd prime, if ζp ∈ Kp then n = [Kp : Qp] is divisible
by (p− 1). In particular, it is an even number and the above description makes sense.

As a corollary, we get a result in the converse direction of [Sch68]:

Corollary 12. Let K be a finite Galois extension of Q, and p be an odd rational prime such
that ζp /∈ K, and p decomposes in K. If G is a p-group with d(G) ≤ [Kp : Qp]/2 + 1 then G
is K-admissible.

The proof of the above theorem uses a result of Neukirch [Neu79] generalizing the Grunwald-
Wang theorem, and the description of the Galois group of maximal p-extension of local fields
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as Demuškin groups [NSW13], i.e., Poincaré groups of dimension 2. Presentation of these
groups have a striking similarity to that of pro-p completion of fundamental groups of topo-
logical surfaces, and I am currently studying whether that analogy in the sense of arithmetic
topology can be useful in providing an alternative description of admissible groups in this
case. Similar to the Prop 8, this result partially extends to more general solvable groups, as
well as to non-Galois number fields.

2.2. Over special classes of number fields. This section contains results after specializ-
ing to certain classes of number fields, such as Galois number fields, number fields of degree
2n and odd degree over Q, and finally the cyclotomic fields.
As a corollary to Theorem 2 and Theorem 7, for the Galois number fields we get the

following result. Here fp is the residue degree of prime p.

Corollary 13. Let K be a Galois number field. An odd p-group with p coprime to the
discriminant of K|Q is K-admissible if and only if one of the following conditions holds:

(i) prime p decomposes in K and d(G) ≤ fp + 1, or,
(ii) prime p does not decompose in K and G is metacyclic.

Moreover, if K = Q(ζlr) for l a prime, Corollary 13 leaves out only the case of l-groups.
Since l does not decompose in K, any admissible l-group must be metacyclic [Sch68]. In
the converse direction, while every metacyclic l-group is known to be admissible over Q(ζl)
[Lie94], it follows from Prop 6 that there are metacyclic l-groups that are not admissible
over Q(ζlr) for r ≥ 2.
Similar to the previous corollary,

Corollary 14. Let K be a Galois number field of degree 2n, and G be an odd p-group. Then
the following assertions hold:

(i) If p does not decompose in K, then G is K-admissible if and only if G is metacyclic.
(ii) If p decomposes in K, and either (p− 1) ∤ [Kp : Qp] or p is unramified in K then G

is K-admissible if and only if d(G) ≤ [Kp : Qp] + 1.

Note that in order for (p − 1) to divide the local degree [Kp : Qp], p must be a Fermat
prime and smaller than or equal to [Kp : Qp]/2. At present, there are only 5 Fermat prime
known and this list is conjectured to be exhaustive.

Since every quadratic extension is automatically Galois, we can use the above corollary.
Moreover, there are no exceptional Fermat primes in that case, and so we get:

Corollary 15. Let K be a quadratic number field, and G be an odd p-group. Then G is
K-admissible if and only if one of the following conditions holds:

(i) prime p decomposes in K and d(G) ≤ 2, or,
(ii) prime p does not decompose in K and G is metacyclic.

The case of quartic number fields is more involved. First, the field can be non-Galois, and
second, there is the possible Fermat prime 3 even if the field is Galois over Q. When the
field is non-Galois, I look at the various possible splittings of primes, and argue that the
local field cannot contain p-th roots of unity. The result is

Proposition 16. Let K be a quartic number field. Then a p-group G for p ̸= 2, 3 is
admissible over K if and only if one of the following two conditions hold:

6



(i) p does not decompose in K, and G is metacyclic.
(ii) p decomposes in K, and d(G) ≤ min

p|p
([Kp : Qp]) + 1.

Similar to Corollary 14, the Galois number fields of odd degree are another special class
of number fields. My result is:

Corollary 17. Let K be a Galois number field of odd degree, and G be an odd p-group.
Then the following assertions hold:

(i) If p does not decompose in K and either p ∤ [K : Q] or p is unramified in K, then G
is K-admissible if and only if it is metacyclic.

(ii) If p decomposes in K, then G is K-admissible if and only if d(G) ≤ [Kp : Qp] + 1.

Similar to the quartic case, arguing about the various splittings of prime p, I show the
following result about cubic number fields.

Proposition 18. Let K be a cubic number field, and G be a p-group for p ̸= 2, 3. Then G
is K-admissible if and only if one of the following conditions holds:

(i) prime p decomposes in K and d(G) ≤ 2, or,
(ii) prime p does not decompose in K and G is metacyclic.

Note that once again we cannot rely entirely on Corollary 17 since the number field K may
not be Galois. The exceptional case of p = 3 in Corollary 18 and more generally the case of
p | [K : Q] in Corollary 17 can have a more involved description of admissible p-groups. For
example, using Liedahl’s criterion about admissibility of metacyclic p-groups I show that

Proposition 19. For p-prime, the non-abelian semi-direct product Z/p2 ⋊ Z/p is not ad-
missible over the unique degree p number field inside Q(ζp2).

In particular, Z/9⋊ Z/3 is not admissible over Q(ζ9 + ζ−1
9 ).

2.3. Global function fields. Let K be a global function field K of characteristic p > 0.
Schacher showed that if a group G is admissible K then the l-Sylow subgroups of G for l ̸= p
must be metacyclic [Sch68]. For the case when l = p, a result of Saltman [Sal77] implies that
every p-group is admissible over K. As metacyclic abelian l-groups are always admissible
over global fields, we get

Proposition 20. A finite abelian group G is admissible over a global function field of char-
acteristic p > 0 if and only if l-Sylow subgroups for l ̸= p are metacyclic.

We also have an analogue of Proposition 6 for the case of global function fields.

Proposition 21. Let K be an global function field of characteristic p > 0. Let l ̸= p be a
rational prime such that ζln ∈ K for n ≥ 0. Let G be a finite group such that its l-Sylow
subgroup is non-abelian of order ≤ ln+1. Then G is not admissible over K.

For example, as a consequence of this proposition, the dihedral group of order 8 is not
admissible over global function fields of characteristic p ≡ 1 (mod 4) (e.g., curves over
F5). More generally, if the constant field Fq of the global function field K is such that
q ≡ 1 (mod l2) for some prime l then the (unique) non-abelian group Z/l2Z ⋊ Z/lZ is not
admissible over K.
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2.4. Other research works. Before starting my doctoral training in mathematics, my work
involved applying statistical methods to various problems. I will briefly describe here three
of my projects that led to publications [JAGSB20; SD18; PDS18].

The first project concerns an important molecular biological process called RNA splicing.
While various machine learning methods have been widely adopted in biomedical sciences for
prediction tasks, some of the most successful methods (for e.g., deep learning methods) lack
mechanisms to explain these predictions in terms of inputs. In this collaborative project, we
designed several statistical methods that can be applied to general deep learning models to
find partial explanations for various predictions, and used these methods to identify a new
protein important to liver-specific RNA splicing [JAGSB20].

The other two projects involve using the user search data from an e-commerce search engine
to inform product recommendations and inventory management. The first project involved
designing methods inspired from information theory to improve the search recommendation
framework, yielding significant revenue increase according to standard hypothesis testing
methodology (“A/B testing”) [SD18]. The other project involved devising probabilistic
methods based on clustering and community detection techniques to utilize the user search
data to identify subsets of product categories that are “similar” to each other [PDS18].

3. Plan of future research

3.1. Admissibility of solvable groups over number fields. For the question of admis-
sibility of p-groups (and so also of nilpotent groups) over number fields, the remaining case
that is not well understood is when ζp ∈ K and p decomposes in K. The main difficulty
in this case is that the IGP (inverse Galois problem) with local conditions may have a neg-
ative answer (for example, Wang’s counterexample to Grunwald’s original result: there is
no degree 8 cyclic extension L of Q such that its completion L2 at 2 is the unique degree
8 unramified extension of Q2). Nevertheless, it is a natural question whether the class of
admissible p-groups can be described in this case, partially if not completely. A promising
approach that I am pursuing is to frame Schacher’s criterion for admissibility as a series of
embedding problems, as done in the proof of Theorem 2.

As remarked after Proposition 8, once we go beyond nilpotent groups, the question of nec-
essary conditions for a group to be admissible is basically wide open. In this case Schacher’s
criterion says that a p-Sylow subgroup of an admissible group is a subgroup of a decompo-
sition group, and not necessarily the full decomposition group. Consequently, the p-Sylow
subgroups are Galois groups over an extension of Kp, and not necessarily over Kp (here
p | p).

3.2. How does admissibility change in extension of number fields? For a given
number field, the class of admissible groups tend to be quite restricted. At the same time,
every finite group is admissible over some number field [Sch68]. So a natural question is to
understand how the class of admissible groups changes in extensions of number fields, and
more generally in extension of global fields.

For example, consider the extensions Q ⊆ K = Q(ζ9) ⊆ L = Q(ζ9,
√
7), and let G be the

non-abelian semidirect product Z/9 ⋊ Z/3. By Sonn’s result, G is admissible over Q, and
Proposition 6 shows that G is not admissible over K. On the other hand, using results on
embedding problems, it can be shown that G is admissible over L. There are two different
things happening here. As we go from Q to K, roots of unity are adjoined, and that forces
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G to not be admissible. But when we go from K to L, the prime 3 decomposes in L, and
that makes it possible for G to be admissible over L. I am working on understanding this
phenomenon and how adjoining roots of unity affects the class of admissible groups.

A related question is whether admissibility determines the number field; namely, for two
different number fields the class of admissible groups is also different. This was first investi-
gated by Sonn [Son85]. and the question of whether admissibility determines the degree of
the number field is currently open. The same question can also be asked over global function
fields.

3.3. Admissibility over other arithmetically interesting fields. The question of ad-
missibility can be asked over any field. In [HHK11], the authors considered the case of
semi-global fields with algebraically closed residue fields. In [RS13], the authors obtained
partial results for function fields of p-adic curves. My next research project is to investigate
the case of semi-global fields with non-algebraically closed residue field. As in the case of
global fields and semi-global fields with algebraically closed residue field, I expect roots of
unity to play a crucial role in this case as well.

3.4. Admissibility of non-solvable groups over number fields. In addition to solvable
groups, some classes of non-abelian simple groups have also been shown to be admissible
over certain number fields [FV87; FF90; Fei04]. If K is a number field, and G is a group,
then a common theme in the proofs to show admissibility of G over K is to find explicit
polynomials over K(t1, . . . , tn) for some n, and argue that it is possible to specialize ti’s to
realize G as a Galois group while satisfying the local conditions in Schacher’s criterion.

I plan to investigate this theme further, particularly beyond the case of Sylow metacyclic
groups. In addition, I also plan to study how realizing Galois groups through Galois repre-
sentations of geometric objects (such as torsion points on an abelian variety) can be exploited
to inform the admissibility problem.
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